Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Venkataraya Shettigar, ${ }^{\text {a }}$
Mohd Mustaqim Rosli, ${ }^{\text {b }}$
Hoong-Kun Fun, ${ }^{\text {b }}$ * Ibrahim Abdul Razak, ${ }^{\text {b }}$
P. S. Patil ${ }^{\mathrm{a}}$ and
\section*{S. M. Dharmaprakash ${ }^{\text {a }}$}

${ }^{\text {a }}$ Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.125$
Data-to-parameter ratio $=39.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(4-Bromophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one

Each of the two unique molecules of the title compound, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{2}$, is non-planar, the dihedral angle between the two benzene rings being 55.04 (7) ${ }^{\circ}$ in one molecule and $51.45(6)^{\circ}$ in the other. In the crystal structure, the molecules are stabilized by short $\mathrm{Br} \cdots \mathrm{O}$ interactions which link the molecules into chains along the a axis. These chains are stacked down the b axis.

Comment

The title compound, (I), was prepared as part of our ongoing studies (Patil et al., 2006a,b) of non-linear optical (NLO) properties of chalcone derivatives (Fichou et al., 1988; Kitaoka et al., 1990; Uchida et al., 1998; Goto et al., 1991; Zhang et al., 1990; Zhao et al., 2000). Crystals of (I) do not exhibit secondorder non-linear optical properties as they crystallize in a centrosymmetric space group.

(I)

The asymmetric unit of (I) contains two molecules, A and B (Fig. 1). The bond lengths and angles in both molecules are similar, showing normal values (Allen et al., 1987), and are comparable to those in related structures (Patil et al., 2006a,b). The dihedral angle between the two benzene rings is 55.04 (7) ${ }^{\circ}$ in molecule A and 51.45 (6) ${ }^{\circ}$ in molecule B. The least-squares plane through the enone unit (O1/C7-C9) makes dihedral angles of 24.03 (13) and 31.22 (13) ${ }^{\circ}$ with the planes of the $\mathrm{C} 1-$ C6 and C10-C15 benzene rings, respectively, in molecule A and 25.56 (9) and $25.90(10)^{\circ}$, respectively, in molecule B. The methoxy group attached at C13 is almost coplanar with the $\mathrm{C} 10-\mathrm{C} 15$ benzene ring, with $\mathrm{C} 16-\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$ torsion angles of $-170.33(19)$ and $171.05(19)^{\circ}$, respectively, for A and B.

In each independent molecule, an intramolecular C $\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1) generates an $S(5)$ ring motif (Bernstein et al., 1995). The short $\mathrm{Br} 1 A \cdots \mathrm{O} 2 A^{\mathrm{i}}[3.056$ (2) \AA] and $\operatorname{Br} 1 B \cdots \mathrm{O} 2 B^{\mathrm{i}}[3.022$ (2) \AA] [symmetry code: (i) $1+x, y, z$] contacts form chains of molecules along the a axis. The chains are stacked down the b axis (Fig. 2).

Experimental

4-Bromoacetophenone (0.01 mol) in ethanol (25 ml) was mixed with 4-methoxybenzaldehyde (0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution of sodium hydroxide ($5 \mathrm{ml}, 20 \%$). This mixture was stirred well and left to stand for 12 h . The resulting crude solid mass was collected by filtration and recrystallized from acetone.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{2}$
$M_{r}=317.17$
Monoclinic, $P 2_{1} / c$
$a=15.7797(3) \AA$
$b=5.8463(1) \AA \AA$
$c=32.4291(6) \AA$
$\beta=119.088(1)^{\circ}$
$V=2614.35(9) \AA^{3}$

Data collection

Bruker SMART APEX2 CCD area-	92812 measured reflections
detector diffractometer	13630 independent reflections
ω scans	10641 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.056$
$\quad(S A D A B S ;$ Bruker, 2005)	$\theta_{\max }=37.5^{\circ}$
$T_{\min }=0.241, T_{\max }=0.522$	
$\quad($ expected range $=0.217-0.471)$	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0399 P)^{2}\right. \\
& +4.617 \mathrm{P} \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=1.13 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-2.11 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Figure 2
Part of the crystal packing of (I), viewed down the b axis. Dashed lines represent $\mathrm{Br} \cdots \mathrm{O}$ short contacts.
(UGC), Bangalore and New Delhi, for the award of a teacher fellowship under the Faculty Improvement Programme (FIP) of X Plan period.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Fichou, D., Watanabe, T., Tanaka, T., Miyata, S., Goto, Y. \& Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.

Goto, Y., Hayashi, A., Kimura, Y. \& Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.
Kitaoka, Y., Sasaki, T., Nakai, S., Yokotani, A., Goto, Y. \& Nakayama, M. (1990). Appl. Phys. Lett. 56, 2074-2076.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o896-o898.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710-o1712.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. \& Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 314, 135-140.
Zhang, G., Kinoshita, T., Sasaki, K., Goto, Y. \& Nakayama, M. (1990). J. Cryst. Growth, 100, 411-416.
Zhao, B., Lu, W. Q., Zhou, Z. H. \& Wu, Y. (2000). J. Mater. Chem. 10, 15131517.

[^0]: © 2006 International Union of Crystallography All rights reserved

